Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.

نویسندگان

  • Juuso T Korhonen
  • Panu Hiekkataipale
  • Jari Malm
  • Maarit Karppinen
  • Olli Ikkala
  • Robin H A Ras
چکیده

Hollow nano-objects have raised interest in applications such as sensing, encapsulation, and drug-release. Here we report on a new class of porous materials, namely inorganic nanotube aerogels that, unlike other aerogels, have a framework consisting of inorganic hollow nanotubes. First we show a preparation method for titanium dioxide, zinc oxide, and aluminum oxide nanotube aerogels based on atomic layer deposition (ALD) on biological nanofibrillar aerogel templates, that is, nanofibrillated cellulose (NFC), also called microfibrillated cellulose (MFC) or nanocellulose. The aerogel templates are prepared from nanocellulose hydrogels either by freeze-drying in liquid nitrogen or liquid propane or by supercritical drying, and they consist of a highly porous percolating network of cellulose nanofibrils. They can be prepared as films on substrates or as freestanding objects. We show that, in contrast to freeze-drying, supercritical drying produces nanocellulose aerogels without major interfibrillar aggregation even in thick films. Uniform oxide layers are readily deposited by ALD onto the fibrils leading to organic-inorganic core-shell nanofibers. We further demonstrate that calcination at 450 °C removes the organic core leading to purely inorganic self-supporting aerogels consisting of hollow nanotubular networks. They can also be dispersed by grinding, for example, in ethanol to create a slurry of inorganic hollow nanotubes, which in turn can be deposited to form a porous film. Finally we demonstrate the use of a titanium dioxide nanotube network as a resistive humidity sensor with a fast response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al2O3 using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al2O3 penetrated more than 1500 lm into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radiu...

متن کامل

Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing.

Mechanically excellent native cellulose nanofibers that are cleaved from plant cell walls have been modified by functionalized few-walled carbon nanotubes for hybrid nanofiber/nanotube aerogels. They show elastic mechanical behavior in combination with reversible electrical response under compression allowing responsive conductivity and pressure sensing. The concept combines wide availability o...

متن کامل

Fabrication of hafnia hollow nanofibers by atomic layer deposition using electrospun nanofiber templates

Hafnia (HfO2) hollow nanofibers (HNs) were synthesized by atomic layer deposition (ALD) using electrospun nylon 6,6 nanofibers as templates. HfO2 layers were deposited on polymeric nanofibers at 200 C by alternating reactant exposures of tetrakis(dimethylamido)hafnium and water. Polymeric nanofiber templates were subsequently removed by an ex situ calcination process at 500 C under air ambient....

متن کامل

Template-Based Synthesis of Aluminum Nitride Hollow Nanofibers Via Plasma-Enhanced Atomic Layer Deposition

Aluminum nitride (AlN) hollow nanofibers were synthesized via plasma-enhanced atomic layer deposition using sacrificial electrospun polymeric nanofiber templates having different average fiber diameters (~70, ~330, and ~740 nm). Depositions were carried out at 200°C using trimethylaluminum and ammonia precursors. AlN-coated nanofibers were calcined subsequently at 500°C for 2 h to remove the sa...

متن کامل

Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs.

Self-assemblies and their hierarchies are useful to construct soft materials with structures at different length scales and to tune the materials properties for various functions. Here we address routes for solid nanofibers based on different forms of self-assemblies. On the other hand, we discuss rational "bottom-up" routes for multi-level hierarchical self-assembled constructs, with the aim o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2011